

Art No: A205P001N3

Ri - APM - LP

低速自驱动平台系统

- 兼容 E-NCAP 试验中设定的行人目标物模型
- 平台系统四轮驱动、差速转向,控制灵活性高
- 低雷达信号特征,边沿使雷达反射特征最小化

APM-LP 低速自驱动平台系统主要用于测试车辆的预防安全系统,驱动模型包括静态行人目标、动态行人目标。系统参数符合 E-NCAP 以及 C-NCAP 标准,用于执行所有 AEB、AES-VRU 等试验测试。

系统内部搭载国产高精度 GNSS 模块,可实现与试验车辆精确位置同步。

适用试验

C-NCAP 2021 主动安全 ADAS 系统试验方法		
AEB-VUR-ped-CPFA	车辆碰撞远端成年行人场景	
AEB-VUR-ped-CPNA	车辆碰撞近端成年行人场景	
AEB/FCW-VUR-ped-CPLA	车辆碰撞纵向成年行人场景	
E-NCAP 2021 主动安全 ADAS 系统试验方法		
AEB-VUR-ped-CPFA	车辆碰撞远端成年行人场景	
AEB-VUR-ped-CPNA	车辆碰撞近端成年行人场景	
AEB-VUR-ped-CPTA	车辆转弯碰撞成年行人场景	
AEB-VUR-ped-CPRA	倒车碰撞成年行人场景	
AEB/FCW-VUR-ped-CPLA	车辆碰撞纵向成年行人场景	
AEB-VUR-ped-CPNC	车辆碰撞近端儿童行人场景	
其它 ADAS 系统试验方法		
JT/T1242	营运车辆自动紧急制动系统	
智能网联相关研发性试验		

Page 1/2

Art No: A205P001N3

技术参数

产品型号	
低速驱动平台系统	A205P001N3

硬件参数			
尺寸 (L*W*H)	820*520*33	mm	
承载物	成人、儿童目标物行人模型		
固定形式	电磁铁		
驱动形式	四轮驱动+差速转向		
耐候性	IP 65		
最高速度	10-15	km/h	
最大纵向加速度	0.3	G	
负载能力	20	kg	
续航时间	≥2	h	
重量	≈40	kg	
最大离地间隙	≤10	mm	
承受碾压重量	≥2000	kg	
位置控制精度	5	cm	
工作温度	≤60	$^{\circ}$	

APM-LP 的核心是一个运行在自主研发的控制软件下的动力控制器。车载无线分享位置数据,通过同步接口提供给其他控制器使用。由于使用图像化轨迹信息,从而简化了平台系统的轨迹编程。可进行多个移动目标的复杂场景的创建和快速而轻松地运行。

儿童目标物行人模型

成人目标物行人模型

